Suggested course outcome of the UG Physics CBCS syllabus under Bodoland university by Dept. of Physics, Kokrajhar Govt. College, Kokrajhar

Semester	Paper Code	Paper Title	Course Outcome
Ι	PHY-101H	C-1: Mathematica	Students who successfully complete this course will
		Phyiscs-I	have a better understanding of vectors and their
			and their uses various coordinate systems and the
			concepts of probability and error.
	PHY-102H	C-2: Mechanics	Students should be able to comprehend Newtonian
			motion, Galilean transformations, projectile motion,
			work & energy, Simple harmonic oscillations, motion
			under a central force, elastic and inelastic collisions,
			completing the course
	PHY-101R	GE-1: Mechanics	Students are expected to understand the function of
		GL 1. Meenames	vectors and coordinate systems in physics, solve
			ordinary differential equations, apply the laws of
			motion to various dynamical situations, understand
			the transformations of inertial reference frames,
			momentum and angular momentum and use it to
			solve fundamental problems, as well as observe
			simple harmonic motion, motion under a central
			force, and comprehend time dilation and length.
II	PHY-201H	C-3: Electricity &	Students who successfully complete this course will
		Magnetism	be able to comprehend electric and magnetic fields
			electromagnetic induction. Kirchhoff's law
			applications in various circuits, and network
			theorem applications in circuits.
	PHY-202H	C-4: Waves and	Students will be able to comprehend superposition
		Optics	of harmonic oscillations, various wave motion,
			holography after successfully completing this
			course.
	PHY-201R	GE-2: Electriciy,	Students should be able to apply Gauss's law of
		Magnetism and	electrostatics to various issues, calculate the
		EMT	magnetic forces acting on moving charges and the
			magnetic fields caused by currents, have a basic
			understanding of magnetic materials, and
			comprehend and apply the ideas of induction.
			Students will be able to measure resistance (high
			and low), voltage, current, self and mutual
			inductance, capacitor, magnetic field intensity and
			its change, and other circuits such as RC and LCR
			in the lab course.
III	PHY-301H	C-5: Mathmatical	Students who successfully complete the course will
		Physics – II	be able to solve differential equations utilising
			power series solutions, separation of variables techniques special integrals and Fourier series

	PHY-302H PHY-303H	C-6: Thermal Physics C-7: Digital System and applications	Students who successfully complete the course will be able to recognise and describe the statistical character of several thermodynamics features including entropy, temperature, thermodynamic potentials, free energies, Maxwell's relations in thermodynamics, and the behaviour of actual gases. After successfully completing the course, students will be able to comprehend the CRO's operating principle, analyse, create, and use circuits with combinational logic Sort various semiconductor memory, examine, use sequential logic circuits using PLD to simulate and construct combinational
	PHY304HR	SEC-1A Physics workshop skill	and sequential circuits, create a digital logic etc.which will useful to address issues in the real world.This course's objective is to familiarise students with a variety of mechanical and electrical tools via
	PHY-301R	GE-3: Thermal Physics and statistical mechanics	hands-on practise. Students should understand the fundamentals of thermodynamics, the first and second laws of thermodynamics, the notion of entropy and related theorems, the thermodynamic potentials and their physical interpretations, Maxwell's thermodynamic relations, the fundamentals of the kinetic theory of gases, the Maxwell-Boltzman distribution law, equipartition of energies, the mean free path of molecular collisions, viscosity, and thermal conductivity, quantum statistical distributions, viz., the Bose- Einstein statistics and the Fermi-Dirac statistics by the end of this course.
IV	PHY-401H	C-8: Mathmatical Physics – III	Students who successfully complete the course will be able to use the residue theorem to calculate complex integrals and the Fourier and Laplace transforms to solve differential equations.
	PHY-402H	C-9: Elements of modern physics	Students who successfully complete the course will be able to comprehend recent advances in physics, including Planck's law, the emergence of the notion of probability interpretation, and the formulation of the Schrodinger equation. Also, students will get a basic understanding of lasers, radioactivity, and nuclear structure.
	РНҮ-403Н	C-10: Analog system & applications	Students who successfully complete the course will be able to comprehend the physics of semiconductor p-n junctions, bipolar junction transistors, transistor biassing and stabilisation circuits, the idea of feedback in amplifiers, and oscillator circuits. They will also have an understanding of operational amplifiers and their uses.
	PHY-404HR	SEC2C: RenewableEnergy and Energy Harvesting Skill	This course's objective is to give students exposure and practical experience in addition to academic knowledge wherever feasible.

	PHY-401R	GE-4: Waves and	After completing this course, students should be
		Optics	able to explain simple harmonic oscillation and
		- F	the superposition principle, the significance of
			the classical wave equation in transverse and
			longitudinal waves and how to solve a variety of
			physical systems using it, the idea of normal
			modes in transverse and longitudinal waves and
			how to determine their frequencies, interference
			as the superposition of waves from coherent
			sources descended from the same parent source,
			and many other concepts. Show that you
			comprehend polarisation, interference, and
			diffraction experiments.
V	PHY-501H	C-11: Quantum	Students will be able to comprehend the
		Mechanics &	fundamental concepts of quantum mechanics,
		applications	including the Schrödinger equation, the wave
			non stationary states, time evolution of solutions
			and the connection between quantum mechanics
			and linear algebra, upon successfully completing
			the course. The hydrogen atom Schrödinger
			equation will be solvable by students. Students will
			be familiar with the ideas of angular momentum,
			spin, the quantization and addition of these
			quantities, spin-orbit coupling, and the Zeeman
			effect.
	PHY-502H	C-12: Solid State	Students who successfully complete the course
		Physics	should be able to describe the main features of the
			physics of electrons in solids, explain the dielectric,
			comprehend the fundamentals of superconductivity
			They should also be able to explain the main
			features of crystal lattices and phonons, understand
			the elementary lattice dynamics and how it affects
			the properties of materials.
	PHY-503H	DSE-1A: Advanced	Students who successfully complete this course will
		Mathematical	be able to work out physics-related issues involving
		Physics-I	linear vector space, matrix algebra, and tensor.
		i nysies i	
	РНУ-50/Н	DSE-24 · Nuclear	Students who successfully complete this course will
	1111-JU+11	and	be able to explain subatomic particles and their
		allu Dartiala Dhavaiaa	characteristics. They will learn about the many
		Particle Physics	nuclear methods, their uses in various fields of
			physics, and their implications for society. The
			course will foster problem-solving abilities and
			knowledge that may be used to multidisciplinary
			domains of physics.
VI	PHY-601H	C-13:	Students who successfully complete the course will
		Electromagnetic	have an understanding of Maxwell's equations,
		Theory	electromagnetic wave (EM) propagation in various
			unbounded and bounded modia production and
			detection of various types of polarised EM waves
			and general knowledge of waveguides and fibre

			optics.
	PHY-602H	C-14: Statistical	Students who successfully complete the course will
		Mechanics	gain knowledge of statistical mechanics approaches
			that they may use in a variety of subjects. After
			completing these students will get knowledge
			regarding the various sorts of particles, their
			behaviors and corresponding statistics associate
			with them.
	PHY-603H	DSE-3A: Classical	The overview of Newton's Laws of Motion, the
		Dynamics	Special Theory of Relativity through the 4-vector
			method, and fluids will be provided to students at
			the end of this course. The Lagrangian and
			Hamiltonian of a system will also be understood by
			the students. At the completion of this course,
			students will be able to tackle the problems in
			classical mechanics.
	PHY-604H	DSE-4A:	After completing this course, students will be able
		Experimenta	to explain measurement errors and the statistical
		ITechniques	analysis of data needed when conducting an
		11000000000000	experiment. Also, students will study about the
			functionality, effectiveness, and uses of industrial
			instruments including digital multimeters, RTD,
			Thermistor, Thermocouples, and Semiconductor
			type temperature sensors.